125 research outputs found

    Offshore oil spill detection using synthetic aperture radar

    Get PDF
    Among the different types of marine pollution, oil spill has been considered as a major threat to the sea ecosystems. The source of the oil pollution can be located on the mainland or directly at sea. The sources of oil pollution at sea are discharges coming from ships, offshore platforms or natural seepage from sea bed. Oil pollution from sea-based sources can be accidental or deliberate. Different sensors to detect and monitor oil spills could be onboard vessels, aircraft, or satellites. Vessels equipped with specialised radars, can detect oil at sea but they can cover a very limited area. One of the established ways to monitor sea-based oil pollution is the use of satellites equipped with Synthetic Aperture Radar (SAR).The aim of the work presented in this thesis is to identify optimum set of feature extracted parameters and implement methods at various stages for oil spill detection from Synthetic Aperture Radar (SAR) imagery. More than 200 images of ERS-2, ENVSAT and RADARSAT 2 SAR sensor have been used to assess proposed feature vector for oil spill detection methodology, which involves three stages: segmentation for dark spot detection, feature extraction and classification of feature vector. Unfortunately oil spill is not only the phenomenon that can create a dark spot in SAR imagery. There are several others meteorological and oceanographic and wind induced phenomena which may lead to a dark spot in SAR imagery. Therefore, these dark objects also appear similar to the dark spot due to oil spill and are called as look-alikes. These look-alikes thus cause difficulty in detecting oil spill spots as their primary characteristic similar to oil spill spots. To get over this difficulty, feature extraction becomes important; a stage which may involve selection of appropriate feature extraction parameters. The main objective of this dissertation is to identify the optimum feature vector in order to segregate oil spill and ‘look-alike’ spots. A total of 44 Feature extracted parameters have been studied. For segmentation, four methods; based on edge detection, adaptive theresholding, artificial neural network (ANN) segmentation and the other on contrast split segmentation have been implemented. Spot features are extracted from both the dark spots themselves and their surroundings. Classification stage was performed using two different classification techniques, first one is based on ANN and the other based on a two-stage processing that combines classification tree analysis and fuzzy logic. A modified feature vector, including both new and improved features, is suggested for better description of different types of dark spots. An ANN classifier using full spectrum of feature parameters has also been developed and evaluated. The implemented methodology appears promising in detecting dark spots and discriminating oil spills from look-alikes and processing time is well below any operational service requirements

    Offshore platform sourced pollution monitoring using space-borne fully polarimetric C and X band synthetic aperture radar

    Get PDF
    Use of polarimetric SAR data for offshore pollution monitoring is relatively newand shows great potential for operational offshore platformmonitoring. This paper describes the development of an automated oil spill detection chain for operational purposes based on C-band (RADARSAT-2) and X-band (TerraSAR-X) fully polarimetric images, wherein we use polarimetric features to characterize oil spills and look-alikes. Numbers of near coincident TerraSAR-X and RADARSAT-2 images have been acquired over offshore platforms. Ten polarimetric feature parameterswere extracted fromdifferent types of oil and ‘look-alike’ spots and divided into training and validation dataset. Extracted features were then used to develop a pixel based Artificial Neural Network classifier. Mutual information contents among extracted features were assessed and feature parameters were ranked according to their ability to discriminate between oil spill and look-alike spots. Polarimetric features such as Scattering Diversity, Surface Scattering Fraction and Span proved to be most suitable for operational services

    Towards operational sea ice type retrieval using L-band Synthetic aperture radar

    Get PDF
    Source at https://doi.org/10.1109/IGARSS.2019.8900458.Operational ice services around the world have recognized the economic and environmental benefits that come from the increased capabilities and uses of space-borne Synthetic Aperture Radar (SAR) observation system. The two major objectives in SAR based remote sensing of sea ice is on the one hand to have a large areal coverage, and on the other hand to obtain a radar response that carries as much information as possible. Although until now, L-Band SAR sensors are rarely used in an operational context, it offers greater capabilities for sea ice type retrieval and is more robust during the melt season compared to higher frequency bands. With the help of JAXA’s ALOS-2 PALSAR-2 sensor, we are able to explore the potential of polarimetric L-band acquisitions for sea ice analysis and classification in an operational environment. In this study we investigated the incidence angle related variation on the L-band backscatter and recommended optimal scenarios for Artificial Neural Network based sea ice type retrieval schemes

    Arctic Sea Ice Characterization using Spaceborne Fully Polarimetric L-, C- and X-Band SAR with Validation by Airborne Measurements

    Get PDF
    Accepted manuscript version. Published version available at https://doi.org/10.1109/TGRS.2018.2809504.In recent years, spaceborne synthetic aperture radar (SAR) polarimetry has become a valuable tool for sea ice analysis. Here, we employ an automatic sea ice classification algorithm on two sets of spatially and temporally near coincident fully polarimetric acquisitions from the ALOS-2, Radarsat-2, and TerraSAR-X/TanDEM-X satellites. Overlapping coincident sea ice freeboard measurements from airborne laser scanner data are used to validate the classification results. The automated sea ice classification algorithm consists of two steps. In the first step, we perform a polarimetric feature extraction procedure. Next, the resulting feature vectors are ingested into a trained neural network classifier to arrive at a pixelwise supervised classification. Coherency matrix-based features that require an eigendecomposition are found to be either of low relevance or redundant to other covariance matrix-based features, which makes coherency matrix-based features dispensable for the purpose of sea ice classification. Among the most useful features for classification are matrix invariant-based features (geometric intensity, scattering diversity, and surface scattering fraction). Classification results show that 100% of the open water is separated from the surrounding sea ice and that the sea ice classes have at least 96.9% accuracy. This analysis reveals analogous results for both X-band and C-band frequencies and slightly different for the L-band. The subsequent classification produces similarly promising results for all four acquisitions. In particular, the overlapping image portions exhibit a reasonable congruence of detected sea ice when compared with high-resolution airborne measurements

    Robust Multi-Seasonal Ice Classification from High Resolution X-Band SAR

    Get PDF
    Automated solutions for sea ice type classification from synthetic aperture (SAR) imagery offer an opportunity to monitor sea ice, unimpeded by cloud cover or the arctic night. However, there is a common struggle to obtain accurate classifications year round; particularly in the melt and freeze-up seasons. During these seasons, the radar backscatter signal is affected by wet snow cover, obscuring information about underlying ice types. By using additional spatiotemporal contextual data and a combination of convolutional neural networks and a dense conditional random field, we can mitigate these problems and obtain a single classifier which is able to classify accurately at 3.5 m spatial resolution for five different classes of sea ice surface from October to May. During the near year-long drift of the MOSAiC expedition we collected satellite scenes of the same patch of Arctic pack ice with X-Band SAR with a revisit-time of less than a day on average. Combined with in-situ observations of the local ice properties this offers up the unprecedented opportunity to perform a detailed and quantitative assessment of the robustness of our classifier for level, deformed and heavily deformed ice. For these three classes, we can perform accurate classification with a probability > 95% and calculate a lower bound for the robustness between 85% and 88%

    Fully automated SAR based oil spill detection using YOLOv4

    Get PDF

    Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition incorporating per-class incidence angle dependency of image texture

    Get PDF
    We provide sea ice classification maps of a subweekly time series of single (horizontal–horizontal, HH) polarization X-band TerraSAR-X scanning synthetic aperture radar (TSX SC) images from November 2019 to March 2020, covering the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. This classified time series benefits from the wide spatial coverage and relatively high spatial resolution of TSX SC data and is a useful basic dataset for future MOSAiC studies on physical sea ice processes and ocean and climate modeling. Sea ice is classified into leads, young ice with different backscatter intensities, and first-year ice (FYI) or multiyear ice (MYI) with different degrees of deformation. We establish the per-class incidence angle (IA) dependencies of TSX SC intensities and gray-level co-occurrence matrix (GLCM) textures and use a classifier that corrects for the class-specific decreasing backscatter with increasing IAs, with both HH intensities and textures as input features. Optimal parameters for texture calculation are derived to achieve good class separation while maintaining maximum spatial detail and minimizing textural collinearity. Class probabilities yielded by the classifier are adjusted by Markov random field contextual smoothing to produce classification results. The texture-based classification process yields an average overall accuracy of 83.70 % and good correspondence to geometric ice surface roughness derived from in situ ice thickness measurements (correspondence consistently close to or higher than 80 %). A positive logarithmic relationship is found between geometric ice surface roughness and TSX SC HH backscatter intensity, similar to previous C- and L-band studies. Areal fractions of classes representing ice openings (leads and young ice) show prominent increases in middle to late November 2019 and March 2020, corresponding well to ice-opening time series derived from in situ data in this study and those derived from satellite synthetic aperture radar (SAR) and optical data in other MOSAiC studies
    • …
    corecore